LV5256GP

BI-CMOS LSI Operating Mode Switching Type Step-Up/Down Converter

Overview

The LV5256GP is an operating mode switching type step-up/step-down converter that can switch the operating mode by using the external signal.

Functions

- Built-in Pch gate drive power supply
- Output short-circuit detection by monitoring the input side of the error amplifier
- OCP timer function
- Software start function
- Support for tracking function
- Built-in thermal protection circuit
- Built-in UVLO
- ON/OFF function: Off-time input current smaller than $1\mu A$
- Oscillation frequency : 300kHz to 1.5MHz Oscillation frequency can be set by an external resistor

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum input voltage	V _{IN} max		12	V
	V _{DD} max		3.6	V
Maximum output voltage	V _O max		16	V
Maximum output current	I _O max	Between OUT and SW	650	mA
Allowable input pin voltage	V _{CONT} max	RT, FB, IN, OCP, SS, ONOFF, TRAC_IN, DU_SEL, OPC_SEL pins	V _{DD}	V
Allowable power dissipation	Pd max	Mounted on a specified board *	0.8	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

* Specified board : 50mm \times 40mm \times 0.8mm, glass epoxy 4-layer circuit board (2S2P).

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

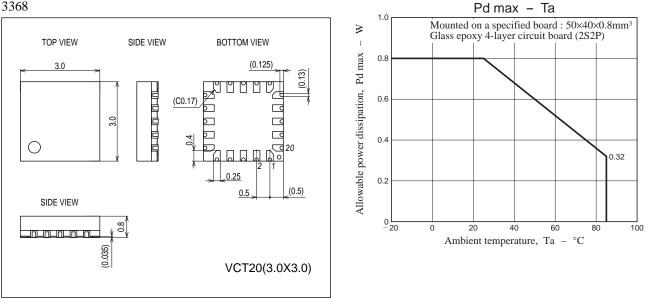
Parameter		Symbol	Conditions	Ratings	Unit
Input voltage range		V _{IN}		4.5 to 10	V
		V _{DD}		2.9 to 3.1	V
Output voltage range	Step-down	V1	When in normal operation mode	1.0 to V _{IN}	V
		V2	When in tracking operation mode	0 to V _{IN}	V
	Step-up	VOUT1	When in normal operation mode	5.3 to 14	V
		V _{OUT} 2	When in tracking operation mode	V _{IN} to	V
Output current		10		600	mA

Electrical Characteristics at Ta = 25°C, V_{DD} = 3.0V, V_{IN} = 6.0V

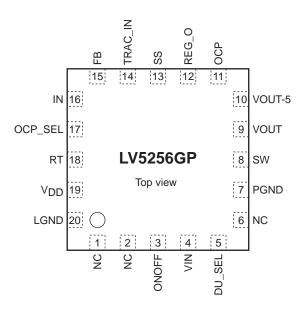
Deremeter	Cumbol	Conditions		Ratings		Unit
Parameter	Symbol Conditions		min	typ	max	Unit
Reference voltage						
Reference voltage for comparison	Vref		-1%	1.0	-1%	V
Error amplifier						
Input voltage range	Vrange		0		1.5	V
Open loop voltage gain	Av		60	110		dB
Unity-gain bandwidth	Ft		2	8		MHz
Output source current	lfboL	IN = 2.0V, FB = 1.0V	2			mA
Output sink current	lfboH	IN = 0V, FB = 0V	100			μΑ
IN pin source current	liniL	IN = 0V		100	300	nA
FB pin output range	R_fb		0.1			V
TRAC_IN pin source current	ItracL	IN = 0 to Vref		100	300	nA
TRAC_IN pin input operation range	R_trac		0.1		Vref-0.1	V
Logic input pin block 1 (ONOFF)	•	•				
Input voltage H level	VoniH		2.8			V
Input voltage L level	VoniL				0.5	V
Input current H level	IoniH	ONOFF = 3.3V		0		μA
Input current L level	IoniL	ONOFF = 0V		0		μΑ
Logic input pin block 2 (DU_SEL)						
Input voltage H level	VduiH		2.8			V
Input voltage L level	VduiL				0.5	V
Input pull-down resistance	Rdu			200		kΩ
Logic input pin block 3 (OCP_SEL)						
Input voltage H level	VocpiH		2.8			V
Input voltage L level	VocpiL				0.5	V
Input pull-down resistance	Rocp			100		kΩ
Soft start						
Soft start source current	IssH	SS = 0V	7	10	13	μΑ
Soft start sink current	IssL	When reset, SS = 1.0V		1		mA
Short-circuit protection, SCP						
Short-circuit protection detection voltage 1	Vsc1	OCP_SEL=GND/OPEN *1		× 0.8		V
Short-circuit protection detection voltage 2	Vsc2	OCP_SEL=REG_0 *1		× 0.4		V
SCP comparator offset voltage	SCPosf	TRAC_IN = 0.7V, operation starts from 0.9V.	-40		40	mV
OCP pin source current	locpH	When in short-circuit protection detection mode		10		μA
OCP pin sink current	locpL	When in normal operation mode, OCP = 1.0V	0.3	1	3	mA
OCP timer latch voltage	Vocp		1.1	1.2	1.3	V
5						L

Continued on next page.

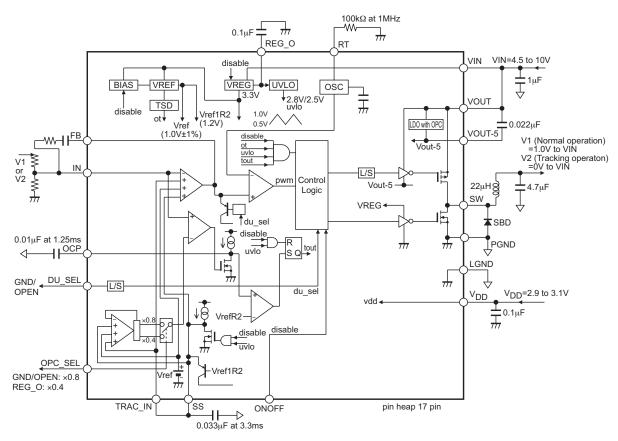
				Ratings			Unit
Parameter		Symbol Conditions		min	typ	max	
Therml protection, UV	′LO					-	
Thermal protection ope temperature	rating	Tot	Design guarantee value *2		175		°C
Thermal protection hyst	teresis	Dot	Design guarantee value *2		20		°C
UVLO lock release volta	age 1	VuvloH	REG_O monitored		2.8		V
UVLO lock voltage 1		VuvloL	REG_O monitored		2.5		V
UVLO lock release volta	age 2	VuvloH2	V _{IN} pin voltage		3.8		V
UVLO lock voltage 2		VuvloL2	V _{IN} pin voltage		3.5		V
Oscillator							
Oscillation frequency		F	RT = 100kΩ	0.8	1	1.2	MHz
Oscillation frequency ra	ange	R_F		0.3		1.5	MHz
Triangular wave lower-sthreshold value	side	VtriL	RT = 100kΩ		0.5		V
Triangular wave upper- threshold value	side	VtriH	RT = 100kΩ		1.0		V
Power supply pin bloc	ck						
Current drain		lvin1	V _{IN} pin, when converter is in 1MHz operation mode.		2	4	mA
		lvin2	V _{IN} pin, when in ONOFF stop mode.			1.0	μΑ
		lvdd1	V _{DD} pin, when in ONOFF stop mode.			1.0	μΑ
Vout-5V Regulator							
Output voltage		Voutm5	Vout-5V regulator, VOUT = 10.0V	VOUT-4.5	VOUT-5	VOUT-5.5	V
Drooping current		lvoutm5	Vout-5V regulator		20		mA
Internal 3.3V Regulato	or						
Output voltage		Vreg_o	Ireg_o = 2.0mA	3.0	3.3	3.6	V
Drooping current		lreg_o	$Vreg_o = 2V, V_{IN} = 5V$		10		mA
Output characteristics	5						
Main switch on resistan	ice (Pch)	RonH	V _{IN} = 5V		0.7		Ω
Main switch on resistan	ice (Nch)	RonL	V _{IN} = 5V		0.7		Ω
Through current prevention dead time		Tdead			25		ns
Maximum on-duty (step-down)		DMAX1	RT = 100kΩ		100		%
Maximum on-duty (step-up)		DMAX2	RT = 100kΩ		85		%
Converter characteris	tics					•	
Efficiency	Step-down	η1	V _{IN} = 5.0V, V = 4.6V, I _O = 200mA		93		%
	Step-up	η2	V _{IN} = 5.0V, VOUT1 = 6.6V, I _O = 200mA		93		%
Line regulation	Step-down	ΔV1/V _{IN}	V _{IN} = 4.5 to 8.6V, V1 = 4.6V, I _O = 200mA	0			%
	Step-up	$\Delta VOUT1/V_{IN}$	V _{IN} = 4.5 to 5.5V, VOUT1 = 6.6V, I _O = 200mA	0			%
Load regulation	Step-down	۵V1/IO	V _{IN} = 8.4V, V1 = 4.6V, I _O = 0 to 200mA	0			
-	Step-up	∆VOUT1/I _O	V _{IN} = 5.0, VOUT1 = 6.6V, I _O = 200mA	0		1	1


 $^{\ast}1$ IN pin voltage is the detection point. The lowest voltage among Vref, TRAC_IN, and SS is used.

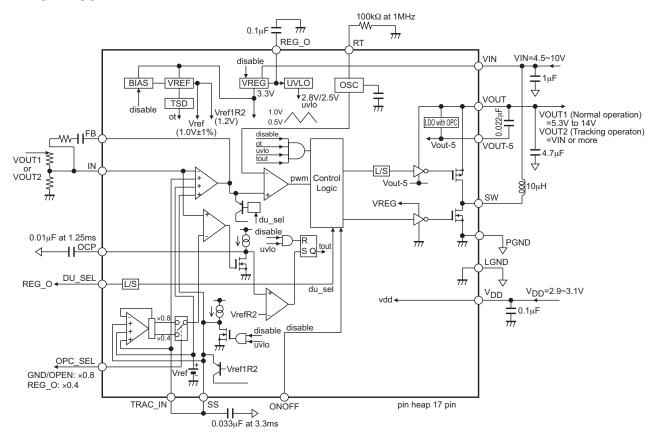
*2 Design guarantee value, and no measurement is performed.


Package Dimensions

unit : mm (typ)



Pin Assignment

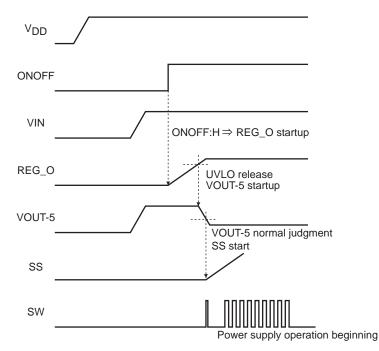


LV5256GP

Block Diagrams and Sample Application Circuit 1 (Step-down)

Sample Application Circuit 2 (Step-up)

Pin Functions							
Pin No.	Pin Name	Description	Equivalent Circuit				
1 2 6	NC	No connection. Must be kept open.					
3	ONOFF	ON/OFF signal input pin. Threshold level is TTL level. Maximum withstand voltage is V _{DD.}					
4	VIN	Power supply pin of the IC. Apply the input voltage.					
5	DU_SLE	Step-up/down switching pin. The IC goes in step-up mode by connecting this pin to REG_O pin, and in step-down mode by connecting this pin to GND or leaving this pin open. An internal pull-down resistor ($200k\Omega$) is provided between DU_SEL and GND pins.	V _{DD} 5 4 5 4 5 4 5 5 4 5 5 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7				
7	PGND	Power ground pin. The source of the output transistor (Nch-MOSFET) is connected.					
8	SW	Switching element. A 0.7Ω (typ) Nch switch is inserted between this pin and PGND, and a 0.7Ω (typ) Pch switch is connected between this pin and VOUT. In step-down mode, insert an inductor between the switching node and power supply output, and in step-up mode insert an inductor between this pin and power supply input.					
9	VOUT	Source potential of the internal Pch-MOSFET. In step-down mode, apply the input voltage. In step-up mode, apply the power supply voltage.					
10	VOUT-5	Internal Pch-MOSFET gate suplly voltage generation pin. Used to generate a voltage with a level equal to VOUT pin voltage-5V by the internal LDO with OCP.					
11	OCP	Overcurrent detection timer setup pin. Connect a capacitor between this pin and ground to define the time interval between the beginning of the overcurrent state and the IC latches off. The capacitor is charged by the 10μA internal constant current source. If the OCP_SEL pin is kept open or connected to GND, the IC identifies a short-circuit and starts the timer counter when the voltage at the IN pin falls below 0.8 times the voltage of Vref, TRAC_IN or SS, whichever is lower. If the OCP_SEL pin is connected to REG_O, the IC compares the voltage at the IN pin with 0.4 times the voltage. When the voltage at this pin goes beyond 1.25V, the IC latches off. The latch-off state is reset by the off signal at the ON/OFF pin or the UVLO lock.	VIN \downarrow REG_O \downarrow 10µA \downarrow \downarrow 10kΩ \rbrace \downarrow				
12	REG_O	3.3V regulator output pin.					

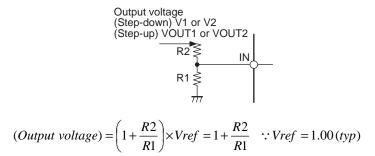

Continued on next page.

Continued	from preceding pag	е.	
Pin No.	Pin Name	Description	Equivalent Circuit
13	SS	Capacitor connection pin for soft start. The capacitor connected to this pin is charged by the internal 10μ A constant current. The interval during which this voltage reaches Vref is called the soft start period. The voltage is clipped to approx. 2V after the soft start. This pin is pulled down to the ground level when ONOFF/UVLO lock mode.	VIN 10μA 10μA 10μA 10μA 10μA 10μA 10μA REG_O REG_O REG_O
14	TRAC_IN	Reference voltage input pin for tracking power supply operating. A voltage from 0V up to Vref applied to this pin serves as the reference voltage for determining the output voltage. This pin must be connected to the SS pin when it is not to be used.	VIN THEG_O THEG_O THEG_O THEG_O THEG_O
15	FB	Error amplifier output pin. Connect a phase compensation component between this pin and IN pin.	REG_O 100μA 100μA 1.25V 1
16	IN	Output voltage input pin. Apply the resistor divided output voltage to this pin.	VIN REG_0 SS TRAC_IN Vref REG_0 REG_0 REG_0
17	OCP_SEL	OCP detection voltage switching pin, A $100k\Omega$ pull-down resistor is provided between OCP_SEL and GND. The IC enters the 0.8 times detection mode when this pin is connected to GND or kept open and enters the 0.4 times detection mode when the pin is connected to the REG_O pin.	V _{DD} 17 17 100kΩ 100kΩ

Continued on next page.

Continued	Continued from preceding page.							
Pin No.	Pin Name	Description	Equivalent Circuit					
18	RT	Oscillation frequency setting pin. Connect a resistor between this pin and GND. A 100kΩ resistor causes the oscillator to oscillate at 1MHz (typ.).						
19	V _{DD}	Logic system power supply. Apply 3.0V±0.1V to this pin from an external source.						
20	LGND	Logic system ground pin. All voltages are measured with respect to this voltage level.						

Startup Sequence



* Be sure to set the ONOFF to 0V when starts or stops V_{DD} . And apply voltage to VIN after V_{DD} started up.

Output Voltage Setting Method

The LV5256GP can produce any arbitrary output voltage. The output voltage is set by the resistor inserted between the IN pin (pin 16) and GND, and IN pin and output voltage.

The calculating formula for setting the output voltage by using the output voltage setup lower-side resistor R1 and the output voltage setup upper-side resistor R2 is as follows:

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized upplication, Buyer shall indemnify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright aws and is not for resale in any manner.